Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cadmium sulfite hexahydrate revisited

Sergio Baggio, ${ }^{\text {a }}$ Andrés Ibáñez ${ }^{\text {b }}$ and Ricardo Baggio ${ }^{\text {c* }}$
${ }^{\text {a }}$ Universidad Nacional de la Patagonia, Sede Puerto Madryn, and, CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, bepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and CIMAT, Casilla 487-3, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: unbaggio@cenpat.edu.ar

Received 8 March 2008; accepted 21 April 2008

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{O})=0.002 \AA$; R factor $=0.018 ; w R$ factor $=0.040 ;$ data-to-parameter ratio $=13.9$.

The present structural revision of the title compound, tetracadmium tetrasulfite hexahydrate, $\left[\mathrm{Cd}_{4}\left(\mathrm{SO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]$-$\mathrm{H}_{2} \mathrm{O}$, is a low-temperature upgrade ($T=100 \mathrm{~K}$ and $R=0.017$) of the original room-temperature structure reported by Kiers \& Vos [Cryst. Struct. Commun. (1978). 7, 399-403; T= 293 K and $R=0.080$). The compound is a three-dimensional polymer with four independent cadmium centres, four sulfite anions and six water molecules, five of them coordinated to two cadmium centres and the remaining one an unbound solvent molecule which completes the asymmetric unit. There are two types of cadmium environment: CdO_{8} (through four chelating sulfite ligands) and CdO_{6} (by way of six monocoordinated ligands). The former groups form planar arrays [parallel to (001) and separated by half a unit cell translation along c], made up of chains running along [110] and [$\overline{1} 10]$, respectively. These chains are, in turn, interconnected both in an intraplanar as well as in an interplanar fashion by the latter CdO_{6} polyhedra into a tight three-dimensional framework. There is, in addition, an extensive network of hydrogen bonds, in which all 12 water H atoms act as donors and eight O atoms from all four sulfite groups and two water molecules act as acceptors.

Related literature

For related literature, see: Agre et al. (1981); Brown \& Altermatt (1985); Elder et al. (1978); Harvey et al. (2006); Kiers \& Vos (1978); Larsson \& Kierkegaard (1969).

Experimental

Crystal data

$\left[\mathrm{Cd}_{4}\left(\mathrm{SO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=877.94$
Monoclinic, $P 2_{1} / c$
$a=12.1406$ (3) \AA
$b=10.5485$ (3) A
$c=13.9329$ (4) \AA
$\beta=103.93$ (1)

$$
\begin{aligned}
& V=1731.82(11) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=5.41 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& 0.24 \times 0.12 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.40, T_{\text {max }}=0.64$
31336 measured reflections 3959 independent reflections 3922 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.040$
$S=1.26$
3959 reflections
284 parameters

18 restraints

All H-atom parameters refined
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Cd1-O13	2.2452 (18)	Cd2-O14	2.6091 (18)
$\mathrm{Cd} 1-\mathrm{O} 32^{\text {i }}$	2.2839 (18)	Cd2-O21	2.8126 (18)
Cd1-O22	2.3065 (18)	$\mathrm{Cd} 3-\mathrm{O} 2 \mathrm{~W}$	2.215 (2)
Cd1-O21	2.4078 (17)	$\mathrm{Cd} 3-\mathrm{O} 1 \mathrm{~W}$	2.2272 (19)
Cd1-O12	2.4542 (18)	Cd3-O3W	2.278 (2)
Cd1-O31	2.4752 (18)	Cd3-O31	2.3201 (17)
Cd1-O23	2.6544 (18)	Cd3-O12	2.3482 (18)
$\mathrm{Cd} 1-\mathrm{O} 12^{\text {i }}$	2.7665 (19)	$\mathrm{Cd} 3-\mathrm{O} 11{ }^{\text {iii }}$	2.3518 (18)
Cd2-O34	2.3311 (18)	Cd4-O34	2.2412 (18)
$\mathrm{Cd} 2-\mathrm{O} 14^{\text {ii }}$	2.3365 (18)	Cd4-O4W	2.2599 (18)
Cd2-O33	2.3440 (18)	Cd4-O5W	2.2601 (19)
$\mathrm{Cd} 2-\mathrm{O} 11$	2.3545 (18)	$\mathrm{Cd} 4-\mathrm{O} 32{ }^{\text {iv }}$	2.2816 (18)
$\mathrm{Cd} 2-\mathrm{O} 24{ }^{\text {ii }}$	2.4074 (18)	$\mathrm{Cd} 4-\mathrm{O} 23^{v}$	2.3203 (17)
$\mathrm{Cd} 2-\mathrm{O} 23$	2.4446 (18)	Cd4-O21	2.3571 (17)
Symmetry $-x+1,-y+$	$\begin{aligned} & -x+1,-y, \\ & -x+1, y+ \end{aligned}$	$\begin{aligned} & 1 ; \text { (ii) } \\ & +\frac{3}{2} ; \text { (v) } x, \end{aligned}$	$+1 ; \quad \text { (iii) }$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 13^{\text {i }}$	0.82 (3)	1.88 (2)	2.693 (3)	170 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 14^{\text {vi }}$	0.82 (3)	1.93 (2)	2.679 (3)	151 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 4 W^{\text {iv }}$	0.82 (3)	1.93 (2)	2.719 (3)	162 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 6 W$	0.82 (3)	1.95 (2)	2.681 (3)	149 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 6 W^{\text {vii }}$	0.82 (3)	2.02 (2)	2.833 (3)	172 (4)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 2{ }^{\text {i }}$	0.82 (3)	2.29 (2)	3.092 (3)	168 (4)
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} 22$	0.82 (3)	1.87 (2)	2.651 (3)	159 (3)
$\mathrm{O} 4 W-\mathrm{H} 4 W B \cdots \mathrm{O}^{\text {v }}$	0.82 (3)	1.98 (2)	2.780 (3)	167 (3)
$\mathrm{O} 5 W-\mathrm{H} 5 W A \cdots \mathrm{O} 3$	0.82 (3)	2.05 (2)	2.848 (3)	167 (4)
$\mathrm{O} 5 W-\mathrm{H} 5 W B \cdots \mathrm{O} 24^{\text {viii }}$	0.82 (3)	1.92 (2)	2.708 (3)	162 (4)
$\mathrm{O} 6 W-\mathrm{H} 6 W A \cdots \mathrm{O} 4^{\text {ix }}$	0.82 (3)	2.16 (2)	2.876 (3)	146 (4)
$\mathrm{O} 6 W-\mathrm{H} 6 W B \cdots 3^{\text {a }}$	0.82 (3)	2.18 (2)	2.948 (3)	157 (4)

Symmetry codes: (i) $-x+1,-y,-z+1$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (v) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (vi) $x+1, y, z$; (vii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (viii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ix) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$, (x) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system (Allen, 2002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2070).

References

Agre, V. M., Kozlova, N. P., TrunovV, K. \& Ershova, S. D. (1981). Zh. Strukt. Khim. 22, 138-146.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Elder, R. C., Heeg, M. J., Payne, M. D., Trkula, M. \& Deutsch, E. (1978). Inorg. Chem. 17, 431-440.
Harvey, M. A., Baggio, S. \& Baggio, R. (2006). Acta Cryst. B62, 1038-1042. Kiers, C. Th. \& Vos, A. (1978). Cryst. Struct. Commun. 7, 399-403.
Larsson, L. O. \& Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253-2260. Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Cadmium sulfite hexahydrate revisited

S. Baggio, A. Ibáñez and R. Baggio

Comment

The sulfite $\mathrm{SO}_{3}{ }^{-2}$ ion is a most versatile inorganic ligand: the four atoms in the group can act as coordination donors and thus the molecule displays an enormous collection of different binding modes, from the very simple μ-S, as in pentaamminesulfite cobalt(III) chloride hydrate (Elder et al., 1978), or μ-O, as in trisodium ethylenediamine-tetra-acetato-sulfite-indium(iii) tetrahydrate (Agre et al., 1981), to an impressive $\mu_{10} \mathrm{~S}: O: O: O: O^{\prime}: O^{\prime}: O^{\prime}: O^{\prime \prime}: O^{\prime \prime}: O^{\prime \prime}$ in anhydrous disodium sulfite (Larsson \& Kierkegaard, 1969).

In combination with transition metals the anion can generate interesting structures, many of them reported in pioneering structural works. Some of these, however, even if proficiently worked out to the state of the art at the time of publication, appear nowadays below acceptable (and desirable) standards. This was the case for cadmium sulfite hydrate $\left[\mathrm{Cd}_{4}\left(\mathrm{SO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, originally reported by Kiers \& Vos, 1978, in a R.T.,low resolution structure determination (T: $293 \mathrm{~K}, R: 0.080$) and for which we present herein an upgrade, by way of a low temperature data refinement ($\mathrm{T}: 100 \mathrm{~K}, R$: 0.017).

The structure (shown in Fig. 1) is a three-dimensional polymer with four independent cadmium centres, four sulfite anions and six water molecules, five of them coordinated to two cadmium centres and the remaining one, an unbound solvate which completes the asymmetric unit.

The cadmium environments in the structure split naturally into two types, viz.: two CdO_{8}, centred at Cd 1 and Cd 2 and achieved through four chelating sulfite bites each, and two CdO_{6}, centred at Cd 3 and Cd 4 and where no chelating bites whatsoever take part, the donor O atoms being either bridging (sulfite) or monocoordinated (aqua) (Table 1).

The two octacoordinated cadmium centres are comparable, but due to multiple chelation the corresponding CdO_{8} polyhedra are difficult to describe by any regular model. However, both centres present a similar "tetrahedral" environment of ligands, the one around Cd 1 being more flattened and describable as something midway a tetrahedral and a square planar arrangement. The one around Cd 2 , instead, is much more biased towards a tetrahedral shape.

In this regard the groups are adequate for a Vector Bond Valence treatment (hereafter VBV, Harvey et al., 2006), a novel approach tending to a simpler description of multidentate binding, in which the action of each ligand is replaced by a single interaction vector, the Vector Bond Valence (or VBV), derived from the individual bond valences (Brown \& Altermatt, 1985) of the coordinating atoms.

Even though for the four-ligand coordination geometry the VBV model would not predict a definite geometry for the four VBV vectors, the requirement of a bond valence of ~ 2 for both cations and a nil resultant of their vectorial sum would still be in force.

supplementary materials

These requirements are satisfactorily fulfilled in both cases, with a scalar Bond Valence of 2.017 and 1.949, and a resultant VBV of 0.047 and 0.084 valence units for Cd1 and Cd2, respectively. Also the geometries of the (distorted) tetrahedra are correctly described by the VBV vectors, with the flattened Cd1 polyhedron presenting two large angles between trans VBV (126.8 (1) and $\left.130.8(1)^{\circ}\right)$, and a much tighter span for the rest (Range: $\left.94.9(1)-111.7(1)^{\circ}\right)$ while the tetrahedron centred at Cd 2 presents a close angle distribution throughout (Range: $\left.100.9(1)-115.9(1)^{\circ}\right)$.

The remaining cadmium centres Cd 3 and Cd 4 , lacking any chelating ligand in their polyhedra, present rather regular octahedral arrangements (Table 1).

The anions coordinate through all their three donor O atoms, though not through sulfur, in μ_{3}, μ_{4} and μ_{5} modes (Fig. 2). The internal geometry of the anions is quite regular and similar, as judged by the $\mathrm{S}-\mathrm{O}(\AA), \mathrm{O}-\mathrm{S}-\mathrm{O}\left({ }^{\circ}\right)$ mean values: S 1 , 1.543 (7), 103.2 (21); S2, 1.536 (6), 102.5 (12); S3, 1.540 (19), 103.3 (24); S4, 1.539 (18), 102.8 (17).

In addition to the diversity in cation environments, there is a more profound difference setting apart these two types of polyhedra, and it consists in their quite diverse structural function.

On one side, both CdO_{8} groups join to each other forming two sets of straight chains (See Fig. 3 for details) at $z=0$, running along [110], and $z=1 / 2$, running along [110], (A and B in Fig. 5; see below) both orientations subtending and angle of $98.0(1)^{\circ}$ to each other. Inspection of Fig. 3 reveals that the chains embed the crystallographic symmetry centres at sites X (at $1 / 2,0,1 / 2$) and $\mathrm{Y}($ at $0,1 / 2,1 / 2)$. There is, however, an extra, nearly perfect (though non crystallographic) pseudo centre midway the former two at site $Z=0.255,0.263,1 / 2$, relating Cd 1 with Cd 2 , and $\mathrm{SO}_{3}(1)$ with $\mathrm{SO}_{3}(3)$. The degree of local pseudo symmetry involved can be assessed by the least squares fit of the $\mathrm{Cd} 1, \mathrm{Cd} 2, \mathrm{SO}_{3}(1)$ and $\mathrm{SO}_{3}(3)$ group (built up around the pseudo centre) and its inverted image, which gives a mean deviation of 0.11 (1) \AA and a maximum of 0.14 (1) \AA for the O31-O33 pair (Fig. 4). Fig. 5 shows the way in which these one-dimensional structures interact with each other: the chains containing $\mathrm{Cd} 1-\mathrm{Cd} 2$ (in bold) appear at nearly right angles to each other, either coming out the plane of the paper (type A) or lying on the plane of the paper (type B). The remaining polyhedra, in weak lining, interconnect them in such a way that while ${\mathrm{Cd} 3 \mathrm{O}_{6} \text { groups link parallel chains }(\mathrm{A}-\mathrm{A}, \mathrm{B}-\mathrm{B}) \text { along [110] and [} \overline{110]}, \mathrm{Cd} 4 \mathrm{O}_{6} \text { ones link perpendicular }}^{2}$ chains (A-B), along [001], with the final result of a very tight three-dimensional framework building up.

All six water molecules in the structure are involved in H -bonding through their twelve H atoms as donors (Table 2). The acceptor role is covered by eight O atoms coming from the four sulfite groups and two water molecules. The sulfite anions participate in a rather uneven way, e.g.: sulfite(1) through only one H-bond involving O31, sulfite(2), through two bonds, both involving O 22 , sulfite(3) and sulfite(4) through three bonds each, via O 13 and O 33 (twice) for the former, and by way of O14 and O24 (twice) for the latter. Among the water molecules, only one aqua participates as an acceptor (O4W, bound to Cd 4), the remaining one being the crystal water O 6 W , which receives two bonds, and thus completes the scheme.

Contrasting with what is found in other sulfite structures, strong involvement in H -bonding of sulfite O atoms does not seem to weaken their S-O interactions; thus, the three O's which receive two H-bonds each and could thus be suspected of being affected by a strong electron-withdrawal effect, irrespective of this fact present either similar or significantly shorter $\mathrm{S}-\mathrm{O}$ distances in their SO_{3} groups. This can be assesed in the following data, where the $\mathrm{S}-\mathrm{O}$ under consideration, its bond length, and the mean value of the remaining two $\mathrm{S}-\mathrm{O}$'s in the group (mean-rest) are shown. Thus, in sulfite(2), S2-O22: 1.5302 (19), mean-rest: 1.541 (2) \AA; in sulfite(3), S3—O33: 1.5269 (18), mean-rest: 1.547 (15) Å; in sulfite(4), S4—O24: 1.5189 (19), mean-rest: 1.549 (6) \AA.

The complexity of this H-bonding scheme turns almost impossible any meaningful representation of the network to which it gives rise, for which a detailed packing figure including them has been spared, for the sake of clarity.

Experimental

The compound was obtained by slow inter diffusion of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$ aqueous solutions in (1:1) molar ratio. The connecting path between the two vessels was filled with an aqueous solution of $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$, in order to minimize concentration gradients. After several weeks of unperturbed diffusion a crop of colourless, prismatic crystals of the title compound was obtained.

Refinement

Hydrogen atoms (all of them pertaining to water molecules) were found in the difference- Fourier synthesis and refined with restrained $\mathrm{O}-\mathrm{H}: 0.82(3) \AA, \mathrm{H} \cdots \mathrm{H}: 1.35$ (3) \AA and free isotropic displacement parameters.

Figures

supplementary materials

Fig. 4. Least-squares overlap of the $\mathrm{Cd} 1-\mathrm{Cd} 2$ nucleus with its inverted image thorugh a ($X=0.255, Y=0.263, Z=0.500$, site Z) inversion.

Fig. 5. Schematic representation of the structure packing. See text for details.

cadmium sulfite hexahydrate

Crystal data

$\left[\mathrm{Cd}_{4}\left(\mathrm{SO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=877.94$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.1406$ (3) \AA
$b=10.5485$ (3) \AA
$c=13.9329$ (4) \AA
$\beta=103.93(1)^{\circ}$
$V=1731.82(11) \AA^{3}$
$Z=4$
$F_{000}=1648$
$D_{\mathrm{x}}=3.367 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Mo} \mathrm{K} \mathrm{\alpha}$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 9999 reflections
$\theta=1.9-27.2^{\circ}$
$\mu=5.41 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Prisms, colourless
$0.24 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=150(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.40, T_{\text {max }}=0.64$
31336 measured reflections

3959 independent reflections
3922 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.8^{\circ}$
$\theta_{\text {min }}=1.7^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 13$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$$
\begin{aligned}
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 \\
& w R\left(F^{2}\right)=0.040 \\
& S=1.26 \\
& 3959 \text { reflections } \\
& 284 \text { parameters }
\end{aligned}
$$

18 restraints

All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0143 P)^{2}+2.6649 P\right]
$$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.56$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00228 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cd1	$0.374818(15)$	$0.126886(17)$	$0.512881(12)$	$0.01034(5)$
Cd2	$0.126635(15)$	$0.392254(17)$	$0.488405(12)$	$0.00985(5)$
Cd3	$0.651371(15)$	$0.304514(17)$	$0.535886(13)$	$0.01196(5)$
Cd4	$0.251030(14)$	$0.282648(17)$	$0.748125(12)$	$0.00938(5)$
S1	$0.39723(5)$	$0.40991(6)$	$0.57849(4)$	$0.00932(11)$
O11	$0.30501(15)$	$0.49090(17)$	$0.51101(13)$	$0.0124(4)$
O21	$0.33019(15)$	$0.29972(16)$	$0.60990(13)$	$0.0126(4)$
O31	$0.45766(15)$	$0.34041(17)$	$0.50750(13)$	$0.0126(3)$
S2	$0.58417(5)$	$0.04129(6)$	$0.66523(4)$	$0.01119(12)$
O12	$0.58184(16)$	$0.10397(17)$	$0.56483(13)$	$0.0151(4)$
O22	$0.45763(15)$	$0.03386(19)$	$0.66270(13)$	$0.0167(4)$
O32	$0.61638(16)$	$-0.09653(17)$	$0.64740(13)$	$0.0139(4)$
S3	$0.11611(5)$	$0.11583(6)$	$0.42209(4)$	$0.01077(12)$
O13	$0.20348(15)$	$0.03728(17)$	$0.49607(13)$	$0.0142(4)$
O23	$0.19010(15)$	$0.22405(17)$	$0.39362(13)$	$0.0131(4)$
O33	$0.04828(15)$	$0.18855(17)$	$0.48327(13)$	$0.0146(4)$
S4	$0.01096(5)$	$0.43144(6)$	$0.66480(4)$	$0.01148(12)$
O14	$-0.05477(15)$	$0.40529(17)$	$0.55726(13)$	$0.0144(4)$
O24	$-0.01213(16)$	$0.57150(18)$	$0.67606(13)$	$0.0166(4)$
O34	$0.13592(15)$	$0.42562(18)$	$0.65556(13)$	$0.0137(4)$
O1W	$0.81699(17)$	$0.20277(19)$	$0.57164(16)$	$0.0197(4)$
H1WA	$0.814(3)$	$0.1330(18)$	$0.546(3)$	$0.045(12)^{*}$
H1WB	$0.868(2)$	$0.246(3)$	$0.559(3)$	$0.030(10)^{*}$
O2W	$0.7011(2)$	$0.3753(2)$	$0.68995(16)$	$0.0286(5)$
H2WA	$0.693(3)$	$0.4504(13)$	$0.700(3)$	$0.045(12)^{*}$
H2WB	$0.760(2)$	$0.347(3)$	$0.725(2)$	$0.037(11)^{*}$

O3W	$0.61491(18)$	$0.2464(2)$	$0.37382(15)$	$0.0203(4)$
H3WA	$0.6757(19)$	$0.249(4)$	$0.358(3)$	$0.046(12)^{*}$
H3WB	$0.586(3)$	$0.1767(18)$	$0.359(3)$	$0.034(11)^{*}$
O4W	$0.36903(15)$	$0.11969(18)$	$0.80645(13)$	$0.0133(4)$
H4WA	$0.411(2)$	$0.101(4)$	$0.7709(19)$	$0.032(11)^{*}$
H4WB	$0.405(2)$	$0.133(4)$	$0.8633(11)$	$0.034(11)^{*}$
O5W	$0.12980(17)$	$0.1237(2)$	$0.68645(14)$	$0.0186(4)$
H5WA	$0.100(3)$	$0.132(4)$	$0.6275(9)$	$0.033(10)^{*}$
H5WB	$0.082(2)$	$0.113(4)$	$0.718(2)$	$0.047(13)^{*}$
O6W	$0.83535(18)$	$0.2464(2)$	$0.83907(16)$	$0.0233(4)$
H6WA	$0.861(3)$	$0.180(2)$	$0.822(3)$	$0.058(15)^{*}$
H6WB	$0.885(3)$	$0.284(3)$	$0.879(3)$	$0.052(14)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.00977(9)$	$0.01060(9)$	$0.01059(9)$	$0.00073(6)$	$0.00235(7)$	$0.00000(6)$
Cd2	$0.00950(9)$	$0.00952(9)$	$0.01055(9)$	$0.00085(6)$	$0.00243(6)$	$0.00000(6)$
Cd3	$0.01045(9)$	$0.01000(9)$	$0.01560(9)$	$0.00038(6)$	$0.00346(7)$	$0.00120(6)$
Cd4	$0.00934(9)$	$0.00987(9)$	$0.00873(9)$	$0.00011(6)$	$0.00176(7)$	$0.00026(6)$
S1	$0.0086(3)$	$0.0090(3)$	$0.0101(3)$	$0.0010(2)$	$0.0019(2)$	$0.0000(2)$
O11	$0.0097(8)$	$0.0102(8)$	$0.0169(9)$	$0.0021(7)$	$0.0027(7)$	$0.0033(7)$
O21	$0.0167(9)$	$0.0100(8)$	$0.0131(8)$	$0.0000(7)$	$0.0071(7)$	$0.0011(6)$
O31	$0.0110(8)$	$0.0147(9)$	$0.0130(8)$	$0.0020(7)$	$0.0047(7)$	$0.0004(7)$
S2	$0.0119(3)$	$0.0101(3)$	$0.0110(3)$	$0.0023(2)$	$0.0015(2)$	$-0.0009(2)$
O12	$0.0159(9)$	$0.0134(9)$	$0.0150(9)$	$-0.0016(7)$	$0.0019(7)$	$0.0036(7)$
O22	$0.0130(9)$	$0.0238(10)$	$0.0145(9)$	$0.0067(8)$	$0.0054(7)$	$0.0030(7)$
O32	$0.0172(9)$	$0.0101(8)$	$0.0136(8)$	$0.0053(7)$	$0.0022(7)$	$0.0003(7)$
S3	$0.0099(3)$	$0.0109(3)$	$0.0115(3)$	$0.0002(2)$	$0.0025(2)$	$-0.0015(2)$
O13	$0.0128(9)$	$0.0107(9)$	$0.0186(9)$	$0.0004(7)$	$0.0029(7)$	$0.0019(7)$
O23	$0.0143(9)$	$0.0129(9)$	$0.0135(8)$	$0.0006(7)$	$0.0060(7)$	$0.0003(7)$
O33	$0.0134(9)$	$0.0148(9)$	$0.0179(9)$	$0.0012(7)$	$0.0082(7)$	$-0.0013(7)$
S4	$0.0106(3)$	$0.0121(3)$	$0.0123(3)$	$0.0021(2)$	$0.0038(2)$	$0.0015(2)$
O14	$0.0138(9)$	$0.0145(9)$	$0.0139(8)$	$-0.0008(7)$	$0.0010(7)$	$-0.0009(7)$
O24	$0.0201(10)$	$0.0140(9)$	$0.0164(9)$	$0.0065(8)$	$0.0057(7)$	$-0.0001(7)$
O34	$0.0096(8)$	$0.0172(9)$	$0.0144(8)$	$0.0029(7)$	$0.0033(7)$	$0.0025(7)$
O1W	$0.0131(10)$	$0.0123(9)$	$0.0336(11)$	$-0.0006(8)$	$0.0052(8)$	$-0.0019(8)$
O2W	$0.0419(14)$	$0.0186(11)$	$0.0201(10)$	$0.0122(10)$	$-0.0027(9)$	$-0.0021(8)$
O3W	$0.0221(11)$	$0.0204(10)$	$0.0206(10)$	$-0.0038(8)$	$0.0094(8)$	$-0.0028(8)$
O4W	$0.0134(9)$	$0.0144(9)$	$0.0119(8)$	$0.0023(7)$	$0.0028(7)$	$-0.0005(7)$
O5W	$0.0201(10)$	$0.0231(10)$	$0.0129(9)$	$-0.0100(8)$	$0.0046(8)$	$-0.0013(8)$
O6W	$0.0177(10)$	$0.0271(12)$	$0.0230(10)$	$0.0056(9)$	$0.0006(8)$	$-0.0002(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{O} 13$	$2.2452(18)$
$\mathrm{Cd} 1-\mathrm{O} 32^{\mathrm{i}}$	$2.2839(18)$
$\mathrm{Cd} 1-\mathrm{O} 22$	$2.3065(18)$

$\mathrm{Cd} 3-\mathrm{O} 12$	$2.3482(18)$
$\mathrm{Cd} 3-\mathrm{O} 11^{\mathrm{iii}}$	$2.3518(18)$
$\mathrm{Cd} 4-\mathrm{O} 34$	$2.2412(18)$

sup-6

Cd1-O21	2.4078 (17)
Cd1-O12	2.4542 (18)
Cd1-O31	2.4752 (18)
Cd1-O23	2.6544 (18)
$\mathrm{Cd} 1-\mathrm{O} 12{ }^{\text {i }}$	2.7665 (19)
Cd2-O34	2.3311 (18)
Cd2-O14 ${ }^{\text {ii }}$	2.3365 (18)
Cd2-O33	2.3440 (18)
Cd2-O11	2.3545 (18)
$\mathrm{Cd} 2-\mathrm{O} 24{ }^{\text {ii }}$	2.4074 (18)
Cd2-O23	2.4446 (18)
Cd2-O14	2.6091 (18)
Cd2-O21	2.8126 (18)
Cd3-O2W	2.215 (2)
Cd3-O1W	2.2272 (19)
Cd3-O3W	2.278 (2)
Cd3-O31	2.3201 (17)
$\mathrm{O} 13-\mathrm{Cd} 1-\mathrm{O} 32{ }^{\text {i }}$	95.70 (7)
O13-Cd1-O22	96.10 (7)
$\mathrm{O} 32-\mathrm{Cd} 1-\mathrm{O} 22$	135.43 (6)
O13-Cd1-O21	92.82 (6)
$\mathrm{O} 32-\mathrm{Cd1}-\mathrm{O} 21$	136.46 (6)
$\mathrm{O} 22-\mathrm{Cd} 1-\mathrm{O} 21$	85.53 (6)
O13-Cd1-O12	147.85 (6)
$\mathrm{O} 32-\mathrm{Cd1}-\mathrm{O} 12$	89.36 (6)
O22-Cd1-O12	59.93 (6)
$\mathrm{O} 21-\mathrm{Cd} 1-\mathrm{O} 12$	105.18 (6)
O13-Cd1-O31	138.85 (6)
$\mathrm{O} 32-\mathrm{Cd1}-\mathrm{O} 31$	89.02 (6)
O22-Cd1-O31	108.83 (7)
$\mathrm{O} 21-\mathrm{Cd} 1-\mathrm{O} 31$	58.40 (6)
O12-Cd1-O31	72.77 (6)
$\mathrm{O} 13-\mathrm{Cd} 1-\mathrm{O} 23$	58.36 (6)
$\mathrm{O} 32-\mathrm{Cd} 1-\mathrm{O} 23$	70.94 (6)
$\mathrm{O} 22-\mathrm{Cd} 1-\mathrm{O} 23$	148.13 (6)
$\mathrm{O} 21-\mathrm{Cd} 1-\mathrm{O} 23$	77.80 (6)
$\mathrm{O} 12-\mathrm{Cd1}-\mathrm{O} 23$	150.86 (6)
O31-Cd1-O23	85.29 (6)
O13-Cd1-O12 ${ }^{\text {i }}$	81.22 (6)
$\mathrm{O} 32 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 12^{\mathrm{i}}$	55.66 (6)
$\mathrm{O} 22-\mathrm{Cd} 1-\mathrm{O} 12^{\mathrm{i}}$	84.10 (6)
$\mathrm{O} 21-\mathrm{Cd} 1-\mathrm{O} 12^{\mathrm{i}}$	167.41 (6)
$\mathrm{O} 12-\mathrm{Cd} 1-\mathrm{O} 12^{\mathrm{i}}$	75.58 (6)
$\mathrm{O} 31-\mathrm{Cd} 1-\mathrm{O} 12^{\text {i }}$	132.23 (5)

Cd4-O4W	2.2599 (18)
Cd4-O5W	2.2601 (19)
$\mathrm{Cd} 4-\mathrm{O} 32^{\text {iv }}$	2.2816 (18)
$\mathrm{Cd} 4-\mathrm{O} 23^{\text {v }}$	2.3203 (17)
Cd4-O21	2.3571 (17)
S1-O11	1.5364 (18)
S1-O21	1.5416 (18)
S1-O31	1.5504 (18)
S2-O22	1.5302 (19)
S2-O32	1.5410 (18)
S2-O12	1.5413 (18)
S3-O33	1.5269 (18)
S3-O13	1.5323 (18)
S3-O23	1.5618 (18)
S4-O24	1.5189 (19)
S4-O14	1.5435 (18)
S4-O34	1.5544 (18)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 21$	68.10 (6)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{O} 21$	134.22 (6)
$\mathrm{O} 33-\mathrm{Cd} 2-\mathrm{O} 21$	89.52 (6)
O11-Cd2-O21	54.99 (5)
$\mathrm{O} 24{ }^{\text {ii }}-\mathrm{Cd} 2-\mathrm{O} 21$	148.24 (6)
$\mathrm{O} 23-\mathrm{Cd} 2-\mathrm{O} 21$	74.20 (6)
$\mathrm{O} 14-\mathrm{Cd} 2-\mathrm{O} 21$	119.61 (5)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 1 \mathrm{~W}$	85.69 (8)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 3 \mathrm{~W}$	173.70 (9)
O1W-Cd3-O3W	92.38 (8)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 31$	97.98 (8)
O1W-Cd3-O31	160.09 (7)
O3W-Cd3-O31	85.86 (7)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 12$	99.36 (8)
O1W-Cd3-O12	82.53 (7)
$\mathrm{O} 3 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 12$	86.31 (7)
$\mathrm{O} 31-\mathrm{Cd} 3-\mathrm{O} 12$	77.57 (6)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 11^{\text {iii }}$	86.15 (8)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 11^{\text {iii }}$	104.64 (7)
$\mathrm{O} 3 \mathrm{~W}-\mathrm{Cd} 3-\mathrm{O} 11^{\text {iii }}$	88.54 (7)
O31-Cd3-O11 ${ }^{\text {iii }}$	95.15 (6)
$\mathrm{O} 12-\mathrm{Cd} 3-\mathrm{O} 11^{\text {iii }}$	171.36 (6)
O34-Cd4-O4W	166.47 (7)
O34-Cd4-O5W	91.25 (7)
O4W-Cd4-O5W	82.57 (8)
$\mathrm{O} 34-\mathrm{Cd} 4-\mathrm{O} 32{ }^{\text {iv }}$	103.74 (7)
$\mathrm{O} 4 \mathrm{~W}-\mathrm{Cd} 4-\mathrm{O} 32^{\text {iv }}$	84.65 (7)

$\mathrm{O} 23-\mathrm{Cd} 1-\mathrm{O} 12{ }^{\text {i }}$	107.85 (5)	O5W-Cd4-O32 ${ }^{\text {iv }}$	162.15 (7)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 14^{\mathrm{ii}}$	93.39 (6)	$\mathrm{O} 34-\mathrm{Cd} 4-\mathrm{O} 23^{\text {v }}$	103.74 (6)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 33$	95.19 (6)	$\mathrm{O} 4 \mathrm{~W}-\mathrm{Cd} 4-\mathrm{O} 23^{\text {v }}$	88.31 (6)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{O} 33$	135.02 (6)	$\mathrm{O} 5 \mathrm{~W}-\mathrm{Cd} 4-\mathrm{O} 23^{\mathrm{v}}$	89.67 (7)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 11$	88.74 (6)	$\mathrm{O} 32{ }^{\text {iv }}-\mathrm{Cd} 4-\mathrm{O} 23^{\text {v }}$	77.53 (6)
$\mathrm{O} 14{ }^{\text {ii }}-\mathrm{Cd} 2-\mathrm{O} 11$	84.47 (6)	$\mathrm{O} 34-\mathrm{Cd} 4-\mathrm{O} 21$	78.39 (6)
$\mathrm{O} 33-\mathrm{Cd} 2-\mathrm{O} 11$	139.70 (6)	O4W-Cd4-O21	90.23 (6)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 24^{\mathrm{ii}}$	143.60 (6)	O5W-Cd4-O21	95.87 (7)
$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{O} 24^{\mathrm{ii}}$	60.23 (6)	$\mathrm{O} 32{ }^{\text {iv }}-\mathrm{Cd} 4-\mathrm{O} 21$	96.59 (6)
$\mathrm{O} 33-\mathrm{Cd} 2-\mathrm{O} 24^{\mathrm{ii}}$	88.82 (7)	$\mathrm{O} 23{ }^{\mathrm{v}}-\mathrm{Cd} 4-\mathrm{O} 21$	174.04 (6)
$\mathrm{O} 11-\mathrm{Cd} 2-\mathrm{O} 24^{\text {ii }}$	111.03 (6)	$\mathrm{O} 11-\mathrm{S} 1-\mathrm{O} 21$	103.67 (10)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 23$	134.72 (6)	O11-S1-O31	105.04 (10)
$\mathrm{O} 14{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{O} 23$	131.44 (6)	O21-S1-O31	100.83 (10)
$\mathrm{O} 33-\mathrm{Cd} 2-\mathrm{O} 23$	59.77 (6)	O22-S2-O32	103.91 (11)
$\mathrm{O} 11-\mathrm{Cd} 2-\mathrm{O} 23$	89.63 (6)	$\mathrm{O} 22-\mathrm{S} 2-\mathrm{O} 12$	101.66 (10)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{O} 23$	77.64 (6)	$\mathrm{O} 32-\mathrm{S} 2-\mathrm{O} 12$	102.03 (10)
$\mathrm{O} 34-\mathrm{Cd} 2-\mathrm{O} 14$	57.77 (6)	O33-S3-O13	105.97 (10)
$\mathrm{O} 14{ }^{\mathrm{ii}}-\mathrm{Cd} 2-\mathrm{O} 14$	76.06 (7)	O33-S3-O23	101.25 (10)
O33-Cd2-O14	71.77 (6)	O13-S3-O23	102.63 (10)
O11-Cd2-O14	139.30 (6)	O24-S4-O14	102.06 (10)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{O} 14$	89.80 (6)	O24-S4-O34	104.78 (11)
$\mathrm{O} 23-\mathrm{Cd} 2-\mathrm{O} 14$	129.84 (6)	O14-S4-O34	101.50 (10)

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1, y+1 / 2,-z+3 / 2$; (v) $x,-y+1 / 2, z+1 / 2$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1WA \cdots O13 ${ }^{\text {i }}$	0.82 (3)	1.88 (2)	2.693 (3)	170 (4)
O1W—H1WB \cdots O14 ${ }^{\text {vi }}$	0.82 (3)	1.93 (2)	2.679 (3)	151 (3)
O2W-H2WA \cdots O $4 W^{\text {iv }}$	0.82 (3)	1.93 (2)	2.719 (3)	162 (4)
O2W-H2WB‥O6W	0.82 (3)	1.95 (2)	2.681 (3)	149 (4)
O3W-H3WA $\cdots \mathrm{O}^{\text {W }}$ vii	0.82 (3)	2.02 (2)	2.833 (3)	172 (4)
O3W-H3WB $\cdots 2^{\text {a }}$	0.82 (3)	2.29 (2)	3.092 (3)	168 (4)
O4W—H4WA \cdots O22	0.82 (3)	1.87 (2)	2.651 (3)	159 (3)
O4W—H4WB \cdots O31 ${ }^{\text {v }}$	0.82 (3)	1.98 (2)	2.780 (3)	167 (3)
O5W—H5WA $\cdots 33$	0.82 (3)	2.05 (2)	2.848 (3)	167 (4)
O5W—H5WB $\cdots{ }^{\text {a }} 4^{\text {viii }}$	0.82 (3)	1.92 (2)	2.708 (3)	162 (4)
O6W-H6WA \cdots O24 ${ }^{\text {ix }}$	0.82 (3)	2.16 (2)	2.876 (3)	146 (4)
O6W-H6WB $\cdots{ }^{\text {O }}{ }^{\text {a }}$	0.82 (3)	2.18 (2)	2.948 (3)	157 (4)

Symmetry codes: (i) $-x+1,-y,-z+1$; (vi) $x+1, y, z$; (iv) $-x+1, y+1 / 2,-z+3 / 2$; (vii) $x,-y+1 / 2, z-1 / 2$; (v) $x,-y+1 / 2, z+1 / 2$; (viii) $-x, y-1 /$ $2,-z+3 / 2$; (ix) $-x+1, y-1 / 2,-z+3 / 2$; (x) $x+1,-y+1 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

1
2

3
4

Fig. 3

supplementary materials

Fig. 4

Fig. 5

